

QP Code: 22284

Semill

(3 Hours)

(Total Marks: 100

- page N.B: (1) All questions are compulsory.
 - (2) Attempt any two sub-questions out of three sub-questions from Q2, Q3, Q4, Q5.
 - (3) Figures to the right indicate marks.
 - (4) Non-programmable scientific calculator is allowed.
 - 1. (A) Attempt any five from the following:

10

- (i) If odds in favour of 'A' are a: b, then the probability of A^c is _____
- (ii) If $P(A) = \frac{1}{12}$, $P(B) = \frac{1}{3}$, $P(A \cap B) = \frac{1}{52}$ then $P(A/B) = ______$ and $P(B_A) =$
- (iii) If X takes values 0, 1, 2; P(x = 0) = 0.6; P(x = 2) = 0.5 then P(x = 1)is - 0.1. Is this statement true? Give reason.
- (iv) If c is constant var(c) =
- (v) State the range of correlation coefficient.
- (vi) For a Binomial distribution mean = 5, n = 20, then p = 0.5. Is this true? Give reason.
- (vii) For a Poisson distribution mean = 9 then standard deviation is _
- (B) Answer the following (any five):

10

- (i) Define Exhaustive events, as applied to the theory of probability.
- (ii) State addition theorem of probability for two events, when the events are mutually exclusive.
- (iii) If odds in favour of A is 2:3, odds against B is 4:5. Then $P(A \cap B) =$ ____, if A and B are independent events.
- (iv) Define Joint probability mass function of two discrete random variables.
- (v) If X and Y are random variables with means 6 and 9 and variances 16 and 25 respectively. If E(XY) = 60, find V(X + Y).
- (vi) State the probability mass function of Binomial distribution.
- (vii) Give any two examples of a variable, which follows uniform distribution.

2

- 2. Attempt any two sub-questions from the following:
 - (A) (i) Give classical definition of probability and state its assumptions.
 - (ii) Three books are selected at random from a shelf consisting of 4 novels, 2 story books and a dictionary. What is the probability that:
 - (p) 2 novels and 1 story book is selected.
 - (q) dictionary is not selected.
 - (r) atleast one story book is selected.
 - (B) Define with the help of examples the following terms as applied to theory of probability.
 - (i) Trial.
 - (ii) Simple event.
 - (iii) Impossible event.
 - (iv) Finite sample space.
 - (v) Mutually exclusive events.
 - (C) (i) If A and B are two events defined on a sample space 'S' such that P(A), P(B) > 0, Then prove the following:

$$(p) \quad P\left(\frac{A}{A^1}\right) = 0$$

(q)
$$P(A/B) = \frac{P(A)}{P(B)}$$
 if $A \subset B$.

(ii) Widgets are manufactured in three factories A, B and C. The proportion of defective widgets from each factory are as follows:

Factory A: 0.01

Factory B: 0.04

Factory C: 0.02

Factories A and B produce 30% of the widgets each and the remaining 40% come from factory 'C'.

One widget from the lot is selected and it is found to be a defective. Find the probability that the defective comes from:

- (p) Factory A
- (q) Factory B.

QP Code: 22284

6

3

- 3. Attempt any two sub-questions from the following:
 - (A) (i) With usual notations show that E(aX + b) = aE(X) + b $V(aX + b) = a^2 V(X).$
 - (ii) Let X represents the number of weekly credit card purchases a person makes and Y be the number of credit cards a person owns. Suppose a bivariate table for the two variables is as follows:

X						
		0	1	2	3	
* *	1	0.08	0.1	0.1	0.02	
Y	2	0.08	0.05	0.22	0.05	
	3	0.04	0.04	0.04	0.18	

Evaluate: (p) $P(X \le 1, Y \le 2)$

- (q) $P(X \le 2)$
- (r) P(Y=2)
- (s) $P(X \le 1/Y \le 2)$
- (B) (i) If X and Y are two discrete random variables with joint probability mass function P(X, Y), define marginal distribution of X and conditional distribution of Y/X = x.
 - (ii) The cumulative distribution function of a discrete random variable X is given by:

$$f(x) = 0 x < 0$$

$$= 0.2 0 \le x < 2$$

$$= 0.5 2 \le x < 4$$

$$= 0.7 4 \le x < 6$$

$$= 0.8 6 \le x < 8$$

$$= 1 x \ge 8$$

Obtain expression for p.m.f. (Probability mass function). Hence or otherwise evaluate $P(2 < x \le 6)$; $P(x \ge 4)$; $P(x \le 2)$; $P(0 \le x \le 6)$; P(x > 6).

TURN OVER

6

4

- (C) (i) Let 'x' be a discrete random variable with probability mass function P(x), then define
 - (p) rth raw moment.
 - (q) rth central moment.
 - (ii) The joint probability mass function if (x, y) is given below. Find cov(x, y).

x	y 1	2	3
0	0.05	0.10	0.05
1	0.10	0.20	0.15
2	0.10	0.10	0.15

- 4. Attempt any two sub-questions from the following:
 - (A) Define discrete uniform variate over the range 1, 2, ..., n. Write down its p.m.f. Derive its mean and variance.
 - (B) (i) State any four applications of Binomial distribution in Real life.
 - (ii) For a Binomial variate mean is 3, and 15P(x = 0) = 2P(x = 1). Find n, p, q, P(x = 5), $P(x \ge 2)$, P(x < 2).
 - (C) (i) The calls due to the failure of a computer occur in accordance with Poisson distribution with a mean of 2 per day. Find the probability that:
 - (p) There are three calls for computer failure on the next day.
 - (q) Two or more calls on the next day.
 - (r) Atleast one call on the next day.

[Given $e^{-1} = 0.36788 e^{-2} = 0.13534$].

(ii) State the probability mass function of a Hyper geometric variate and derive its mean.

- 5. Attempt any two sub-questions from the following:
 - (A) (i) State and prove multiplication theorem of probability for two events. 5
 - (ii) 5 boys and 2 girls are to be seated in a row. Find the probability that:
 - (p) girls are together.
 - (q) girls are not together.
 - (B) (i) Define probability mass function of a random variable 'X' and state its properties.
 - (ii) If X and Y are discrete random variable with joint probability mass function as

$$P(x, y)$$
 = $k(2x + y)$ $x = 2, 3, 4$
y = 2, 3, 4
= 0 otherwise

Prepare a Bivariate probability distribution table. Also check whether X and Y are independent. Also find marginal probability distribution of 'X'.

- (C) (i) Derive the recurrence relation between probabilities for a Binomial distribution.
 - (ii) A taxi cab company has 10 Ambassadors and remaining 5 cars are of other make. A person wants to hire 7 taxis for the marriage party by random choice. Find the probability that he chooses:
 - (p) All ambassadors.
 - (q) 3 ambassadors.
 - (r) Also identity the distribution of X, if X is the number of Ambassador cars.